

Colle du 10/06 - Sujet 1 Géométrie et révisions

Exercice 1. Calculer le déterminant de $M = \begin{pmatrix} 1+a & b & a & b \\ b & 1+a & b & a \\ a & b & 1+a & b \\ b & a & b & 1+a \end{pmatrix}$. Quand est-ce que M est inversible?

Exercice 2. Soient $a \in \mathbb{R}$, $\mathcal{D}_1: \begin{cases} x+2z=1 \\ y-z=2 \end{cases}$ et $\mathcal{D}_2: \begin{cases} x-2y=1 \\ x+2y+az=1 \end{cases}$. Montrer que \mathcal{D}_1 et \mathcal{D}_2 sont coplanaires et déterminer une équation cartésienne et une équation paramétrique du plan les contenant.

Exercice 3. Montrer que pour tout $x \in]-1;1[$, on a $\arctan\left(\sqrt{\frac{1-x}{1+x}}\right)=\frac{1}{2}\arccos(x)$.

Colle de mathématiques PTSI

2023-2024

Colle du 10/06 - Sujet 2 Géométrie et révisions

Exercice 1. Soit
$$M=\begin{pmatrix}1&m&2&-1\\m&1&-1&m\\1&1&m&1\\0&m&0&m\end{pmatrix}$$
. Calculer le déterminant de $M.$

Exercice 2.

- 1. Déterminer les valeurs de a pour que A(2,3,1), B(1,2,0), C(3,1,-2) et D(a,4,3) soient coplanaires.
- 2. Pour tout $m \in \mathbb{R}$, on pose $\mathcal{P}_m : m^2x + (2m-1)y + mz = 3$. Déterminer $\bigcap_{m \in \mathbb{R}} \mathcal{P}_m$.

Exercice 3. Soit $f: z \mapsto \frac{z+i}{z-i}$. Déterminer $f(\mathbb{R})$, $f(\mathbb{U} \setminus \{i\})$ et $f(i\mathbb{R} \setminus \{i\})$.

Colle de mathématiques PTSI

2023-2024

Colle du 10/06 - Sujet 3 Géométrie et révisions

Exercice 1. Soient $n \in \mathbb{N}$, $(a_0, \dots, a_n) \in \mathbb{R}^{n+1}$ et pour tout $(P, Q) \in \mathbb{R}_n[X]$ on pose

$$\langle P, Q \rangle = \sum_{k=0}^{n} P^{(k)}(a_k) Q^{(k)}(a_k).$$

Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire.

Exercice 2. On considère les plans

$$\mathcal{P}_1: ax + y + z + 1 = 0$$

$$\mathcal{P}_2: x + ay + z + a = 0$$

$$\mathcal{P}_3: x + y + az + b = 0$$

Déterminer les réels a et b pour que l'intersection de ces trois plans soient une droite. Préciser dans ce cas l'équation cartésienne et paramétrique de la droite.

Exercice 3. Calculer les puissances de $M = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$.